机器学习知识总结——模型评估标准之混淆矩阵

模型评估标准 混淆矩阵 预测值=1 预测值=0 真实值=1 TP FN 真实值=0 FP TN TP=True Postive=真阳性;FP=False Positive=假阳性 TN = True Negative=假阴性;FN=False Negative=假阴性 什么是查准率/精确率 Precision=\frac{TP}{TP+FP} 什么是查全率/召回率 R

- 阅读全文 -

机器学习知识总结——过拟合和欠拟合

过拟合(overfitting) 什么是过拟合? 所谓过拟合就是指在验证集和训练集上表现很好,但是在测试集上表现很差,也就是说泛化能力差。一般表现为: 高方差,低偏差 过拟合的原因 训练样本选取有误、样本标签错误等 样本噪声干扰过大 模型过于复杂 对于神经网络来说: 学习迭代次数太多 如何防止/解决过拟合问题? 扩大数据集 进行正则化(L1正则或者L2正则等) 采用合适的模型(控制模型的

- 阅读全文 -